• 统计研究中心
当前位置: 首页 > 系列讲座 > 正文

北京师范大学赵俊龙教授:Estimation of Linear Functionals in High Dimensional Linear Models: From Sparsity to Non-sparsity


Estimation of Linear Functionals in High Dimensional Linear Models:

From Sparsity to Non-sparsity(高维线性模型中线性函数函的估计:从稀疏到非稀疏)

主讲人:北京师范大学赵俊龙教授

主持人:统计学院林华珍教授

时间2023526日(周五)下午16:00-17:00

举办地点:柳林校区弘远楼408会议室

主办单位:统计研究中心和统计学院 科研处

 

主讲人简介:

赵俊龙,北京师范大学统计学院教授。 从事统计和机器学习相关研究,包括:高维数据分析、统计机器学习、稳健统计等。 在统计学顶级期刊Journal of the Royal Statistical Society: Series BJRSSB)、 The Annals of StatisticsAOS)、Journal of American Statistical Association(JASA)Biometrika以及其他统计学重要期刊发了论文四十余篇。主持多项国家自然科学基金项目,参与国家自然科学基金重点项目。


内容简介:

High dimensional linear models are commonly used in practice. In many applications, one is interested in linear transformations $\bbeta^\top x$ of regression coefficients $\bbeta\ in \mR^p$, where $x$ is a specific point and is not required to be identically distributed as the training data. One common approach is the plug-in technique which first estimates $\bbeta$, then plugs the estimator in the linear transformation for prediction. Despite its popularity, estimation of $\bbeta$ can be difficult for high dimensional problems. Commonly used assumptions in the literature include that the signal of coefficients $\bbeta$ is sparse and predictors are weakly correlated. These assumptions, however, may not be easily verified, and can be violated in practice. When $\bbeta$ is non-sparse or predictors are strongly correlated, estimation of $\bbeta$ can be very difficult. In this paper, we propose a novel pointwise estimator for linear transformations of $\bbeta$. This new estimator greatly relaxes the common assumptions for high dimensional problems, and is adaptive to the degree of sparsity of $\bbeta$ and strength of correlations among the predictors. In particular$\bbeta$ can be sparse or non-sparse and predictors can be strongly or weakly correlated. The proposed method is simple for implementation. Numerical and theoretical results demonstrate the competitive advantages of the proposed method for a wide range of problems.

高维线性模型在实践中常用。在许多应用中,人们对中\mR^p$空间中回归系数$\bbeta\ \top x$的线性变换$\bbeta\ \感兴趣,其中$x$是一个特定的点,不需要与训练数据同分布。一种常见的方法是plug-in技术,它首先估计$\bbeta$,然后将估计量插入线性变换中进行预测。尽管它很受欢迎,但对于高维问题来说,估计$\bbeta$可能很困难。文献中常用的假设包括系数 $\bbeta$ 的信号稀疏且预测变量相关性较弱。然而,这些假设可能不容易验证,并且在实践中可能会被违反。当$\bbeta$非稀疏或预测变量高度相关时,估计$\bbeta$可能非常困难。在本文中,主讲人提出了一种新的$\bbeta$线性变换的逐点估计量。这个新的估计量大大放宽了高维问题的常见假设,并且对$\bbeta$的稀疏程度和预测变量间的相关性强度具有适应性。特别是,  可以是稀疏的或非稀疏的,预测变量可以是强相关或弱相关。所提出的方法易于实现。数值和理论结果表明,所提方法在解决各种问题时具有竞争优势。

上一条:北京师范大学-香港浸会大学联合国际学院潘建新教授:Modeling biomarker variability in joint analysis of longitudinal and survival data纵向和生存数据联合分析中的生物标志物变异性建模

下一条:香港理工大学韩睿渐助理教授:General Pairwise Comparison Models