2013年7月于北京大学光华管理学院取得经济学博士学位,2013年9月至2017年2月在澳大利亚墨尔本大学数学与统计学院任研究员,2017年3月开始全职在西南财经大学统计学院工作。现为西南财经大学数据科学与商业智能联合实验室执行主任、教授、博士生导师、四川省特聘专家、四川省统计专家咨询委员会委员。
Chang, J., Jiang, Q., Shao, X. (2022). Testing the martingale difference hypothesis in high dimension, Journal of Econometrics, in press.
Chang, J., Hu, Q., Liu, C. & Tang, C. Y. (2022). Optimal covariance matrix estimation for high-dimensional noise in high-frequency data, Journal of Econometrics, in press.
Chang, J., Shi, Z. & Zhang, J. (2022). Culling the herd of moments with penalized empirical likelihood, Journal of Business & Economic Statistics, in press.
Chang, J., Cheng, G. & Yao, Q. (2022). Testing for unit roots based on sample autocovariances, Biometrika, Vol. 109, pp. 543-550.
Chang, J., Kolaczyk, E. D. & Yao, Q. (2022). Estimation of subgraph densities in noisy networks, Journal of the American Statistical Association, Vol. 117, pp. 361-374.
Chang, J., Chen, S. X., Tang, C. Y. & Wu, T. T. (2021). High-dimensional empirical likelihood inference, Biometrika, Vol. 108, pp. 127-147.
Chang, J., Tang, C. Y. & Wu, T. T. (2018). A new scope of penalized empirical likelihood with high-dimensional estimating equations, The Annals of Statistics, Vol. 46, pp. 3185-3216.
Chang, J., Guo, B. & Yao, Q. (2018). Principal component analysis for second-order stationary vector time series, The Annals of Statistics, Vol. 46, pp. 2094-2124.
Chang, J., Qiu, Y., Yao, Q. & Zou, T. (2018). Confidence regions for entries of a large precision matrix, Journal of Econometrics, Vol. 206, pp. 57-82.
Chang, J., Delaigle, A., Hall, P. & Tang, C. Y. (2018). A frequency domain analysis of the error distribution from noisy high-frequency data, Biometrika, Vol. 105, pp. 353-369.
Chang, J., Zheng, C., Zhou, W.-X. & Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity, Biometrics, Vol. 73, pp. 1300-1310.
Chang, J., Zhou, W., Zhou, W.-X. & Wang, L. (2017). Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering, Biometrics, Vol. 73, pp. 31-41.
Chang, J., Yao, Q. & Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations, Biometrika, Vol. 104, pp. 111-127.
Chang, J., Shao, Q.-M. & Zhou, W.-X. (2016). Cramer-type moderate deviations for Studentized two-sample U-statistics with applications, The Annals of Statistics, Vol. 44, pp. 1931-1956.
Chang, J., Tang, C. Y. & Wu, Y. (2016). Local independence feature screening for nonparametric and semiparametric models by marginal empirical likelihood, The Annals of Statistics, Vol. 44, pp. 515-539.
Chang, J., Guo, B. & Yao, Q. (2015). High dimensional stochastic regression with latent factors, endogeneity and nonlinearity, Journal of Econometrics, Vol. 189, pp. 297-312.
Chang, J. & Hall, P. (2015). Double-bootstrap methods that use a single double-bootstrap simulation, Biometrika, Vol. 102, pp. 203-214.
Chang, J., Chen, S.-X. & Chen, X. (2015). High dimensional generalized empirical likelihood for moment restrictions with dependent data, Journal of Econometrics, Vol. 185, pp. 283-304.
Chang, J., Tang, C. Y. & Wu, Y. (2013). Marginal empirical likelihood and sure independence feature screening, The Annals of Statistics, Vol. 41, pp. 2123-2148.
Chang, J. & Chen, S.-X. (2011). On the approximate maximum likelihood estimation for diffusion processes, The Annals of Statistics, Vol. 39, pp. 2820-2851.