当前位置: 首页> 研究成果> 学术论文> 正文

2019年研究成果

  1. Haoqi Li, Huazhen Lin*, Paul S. F. Yip and Yuan Li (2019). Estimating population size of heterogeneous populations with large data sets and a large number of parameters. Computational Statistics and Data Analysis. 13934-44.

  2. Ling Zhou, Haoqi Li, Huazhen Lin and Peter X.-K. SONG* (2019). Evaluating functional covariate-environment interactions in the Cox regression model. Canadian Journal of Statistics. 47, 204–221.

  3. Xuerong Chen, Haoqi Li, Hua Liang and Huazhen Lin* (2019). Functional response regression analysis. Journal of Multivariate Analysis. 169, 218-233.

  4. Shulin Zhang, Qian M. Zhou, Dongming Zhu & Peter X.-K. Song (2019) Goodness-of-Fit Test in Multivariate Jump Diffusion Models, Journal of Business & Economic Statistics, 37:2, 275-287,

  5. Mingxuan Cai, Mingwei Dai, Jingsi Ming, Heng Peng, Jin Liu & Can Yang2019BIVAS: A Scalable Bayesian Method for Bi-Level Variable Selection With Applications Journal of Computational and Graphical Statistics https://doi.org/10.1080/10618600.2019.1624365,

  6. Rui She, Shiqing Ling 2019),Inference in heavy-tailed vector error correction modelsJournal of Econometricshttps://doi.org/10.1016/j.jeconom.2019.03.008

  7. Fengmao Lv, Jun Zhu , Guowu Yang , Lixin Duan ∗,2019, TarGAN: Generating target data with class labels for unsupervised domain adaptation, Knowledge-Based Systems, 172.123–129

  8. Wei Lan and Lilun Du (2019) “A Factor-Adjusted Multiple Testing Procedure with Application to Mutual Fund Selection”, Journal of Business and Economics Statistics, 37,147--157.

  9. Fang fang., Wei Lan., Jingjing Tong and Jun Shao (2018+) “Model averagying for prediction with fragmentary data,” Journal  of Business and Economic Statistics, 37,517-527. 2013B2018Asci

  10. Shujie Ma, Wei Lan, Liangjun Su and Chih-Ling Tsai (2018+) “Testing alpha in conditional time-varying factor models with high dimensional assets,” Journal  of Business and Economics Statistics, https://doi.org/10.1080/07350015.2018.1482758.

  11. Danyang Huang, Wei Lan*, Zhang, H, Hansheng Wang (2019),“Least Squares Estimation for Social Autocorrelation in Large-Scale Networks”Electronic Journal of Statistics13 1135--1165.

  12. Yingying Ma, Wei Lan*, Fanyin Zhou and Hansheng Wang (2019),Approximate Least Squares Estimation for Spatial Autoregressive Models with Covariates, Computational Statistics & Data Analysis143.

  13. Xuerong Chen, Yan Chen,Alan T.K. Wan, Yong Zhou ,2019, On the asymptotic non-equivalence of efficient-GMM and MEL estimators in models with missing data, Scand J Statist. 46.361–388

  14. Shuo Li, Bin Guo and Yundong Tu ,2019, Simultaneous Diagnostic Testing for Nonlinear Time Series Models with An Application to the U.S. Federal Fund Rate* OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 0305–9049

  15. Fode Zhang, Heng Lian, 2019, Partially functional linear regression with quadratic regularizationInverse Problems35.105002(28pp)

  16. Fode Zhang, Hon Keung Tony Ng, Yimin Shi, 2019, Geometry on degradation models and mis-specification analysis by using alpha-divergencePhysica A,527.121343

  17. Weihua Zhao, Fode Zhang, Heng LianDebiasing and Distributed Estimation for High-Dimensional Quantile RegressionIEEE Transactions on Neural Networks and Learning Systems,

  18. Weihua Zhao, Fode Zhang, Xuejun Wang, Rui Li, Heng LianPrincipal varying coefficient estimator for high dimensional modelsSTATISTICS https://doi.org/10.1080/02331888.2019.1663521

  19. 庄丹,刘友波,马铁丰2019, 多变点检测问题的Shape-based BS算法. 高校应用数学学报, 34(2): 151-164.

  20. Ruili Sun, Tiefeng Ma, Shuangzhe Liu, 2019, Portfolio selection based on semivariance and distance correlation under minimum variance framework. Statistica Neerlandica, 73 373-394.

  21. Ruili Sun,Tiefeng Ma, Shuangzhe Liu, Portfolio selection: Shrinking the time-varying inverse conditional covariance matrix. Statistical Papers, DOI 10.1007/s00362-018-1059 -0.

  22. Mingchang Cheng,Tiefeng Ma, Youbo Liu, 2019, A projection-based split-and-merge clustering algorithm. Expert Systems with Applications, 116 121-130.

  23. Shuangzhe Liu,Tiefeng Ma, 2019,Discussion of “Birnbaum-Saunders distribution: A review of models analysis and applications.” Applied Stochastic models in Business and Industry, 35(1) 122-125

  24. Ling Zhou, Huazhen Lin*, Kani Chen and Hua Liang. Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models. Journal of Econometrics. 213.593-607

  25. Xiaoping Zhan, Tiefeng Ma, Shuangzhe Liu, Kunio Shimizu, 2019,On circular correlation for data on the torus. Statistical Paper, 60.6,1827-1847 

  26. Fangfang Bai,Xuerong Chen,Yan Chen,Tao Huang*(2019)A general quantile residual life model for length-biased right-censored data,Scand J Statist. 2019;46:1191–1205.

  27. Huazhen Lin*, Baoying Yang, Ling Zhou, Paul S. F. YIP, Ying-Yeh Chen and Hua Liang.2019,Global kernel estimator and test of varying-coefficient autoregressive model. Canadian Journal of Statistics.47.487-519. 

 

上一条:2020年研究成果

下一条:2018年研究成果