• 统计研究中心
当前位置: 首页 > 系列讲座 > 正文

上海财经大学贺莘副教授:Learning linear non-Gaussian directed acyclic graph: From single to multiple sources学习线性非高斯有向无环图:从单个源到多个源

光华讲坛——社会名流与企业家论坛第

主 题Learning linear non-Gaussian directed acyclic graph: From single to multiple sources学习线性非高斯有向无环图:从单个源到多个源

主讲人上海财经大学贺莘副教授

主持人统计学院林华珍教授

时间:2024122日(周一)下午16:00-17:00

举办地点:柳林校区弘远楼408会议室

主办单位:统计研究中心和统计学院 科研处

主讲人简介:

贺莘,上海财经大学统计与管理学院, 副教授。主要研究领域为统计机器学习及其应用,在JASAJMLRJCGSEJSSINICANeurIPS等国际期刊与会议上发表论文20余篇。


内容简介

An acyclic model, often depicted as a directed acyclic graph (DAG), has been widely employed to represent directional causal relations among collected nodes. In this talk, we first propose an efficient method to learn linear non-Gaussian DAG in high dimensional cases from a single source, where the noises can be of any continuous non-Gaussian distribution. The proposed method leverages the concept of topological layer to facilitate the DAG learning, and its theoretical justification in terms of exact DAG recovery is also established under mild conditions. Particularly, we show that the topological layers can be exactly reconstructed in a bottom-up fashion, and the parent-child relations among nodes can also be consistently established. Moreover, we also introduce a novel set of structural similarity measures for DAG and then present a transfer DAG learning framework by effectively pooling the heterogeneous data together for better DAG structure reconstruction in the target study. The established asymptotic DAG recovery is in sharp contrast to that of many existing learning methods assuming parental faithfulness or ordered noise variances. The advantages of the proposed methods are also supported by the numerical comparison against some popular competitors in various simulated examples as well as some real applications.

无环模型,通常被描述为有向无环图(DAG),已被广泛用于表示收集节点之间的有向因果关系。在这次演讲中,主讲人首先提出了一种有效的方法来学习高维情况下的线性非高斯DAG,其中噪声可以是任何连续的非高斯分布。该方法利用拓扑层的概念促进了DAG的学习,并在温和条件下建立了精确DAG恢复的理论依据。特别是,主讲人证明了拓扑层可以以自下而上的方式精确地重建,节点之间的父子关系也可以一致地建立。此外,主讲人还引入了一套新的DAG结构相似性度量,并通过有效地将异构数据汇集在一起,提出了一个迁移DAG学习框架,以便在目标研究中更好地重建DAG结构。建立的渐近DAG恢复与许多现有的假设父母忠诚或有序噪声方差的学习方法形成鲜明对比。在各种模拟实例和实际应用中,与一些流行的竞争对手进行了数值比较,证明了所提方法的优越性。


上一条:湘潭大学向开南教授:极小生成森林中树的数目

下一条:上海财经大学周帆副教授:Recent advances in Distributional Reinforcement Learning分布式强化学习的最新进展