当前位置: 首页 > 首页 > 正文

耶鲁大学张和平教授:Multivariate Adaptive Splines for Analyzing Longitudinal Data

主题:Multivariate Adaptive Splines for Analyzing Longitudinal Data

主讲人:耶鲁大学张和平教授

主持人:统计学院 林华珍教授

时间:2019年3月4日(星期一)下午4:00-5:00

地点:西南财经大学柳林校区弘远楼408会议室

主办单位:统计研究中心 统计学院 科研处

主讲人简介:

张和平博士,耶鲁大学Susan Dwight Bliss生物统计学教授,统计与数据科学教授,儿童研究中心教授。他创建并主持耶鲁大学科学与统计协作中心。同时他也是香港大学荣誉教授,国家千人计划学者和长江讲座教授,泛华统计协会候任主席。他于1982年获得江西师范大学数学学士学位,1991年获得斯坦福大学统计学博士学位并兼修计算机科学。

他是期刊Statistics and Its Interface的创始主编。他目前担任美国统计协会杂志(JASA),遗传流行病学和生殖与不育专题研究的编委。2019担任JASA (ACS)主编。

张教授曾入选哈佛大学公共卫生学院2008年度Myrto Lefkopoulou杰出学者并作2011年IMS Medallion报告,2011年Royan国际生殖健康研究奖的获得者,2013年获得美国生殖医学学会颁发的科学论文奖,2014年March of Dimes早产最佳研究奖,2017年美国妇产科杂志优秀论文奖。

研究兴趣包括非参数方法,纵向数据,统计遗传学和生物信息学,临床试验,流行病学数据统计建模,脑成像分析,统计计算和行为科学的统计方法。他是Springer出版的“递归分区及其应用(Recursive Partitioning and Its Applications)”一书的作者,并在高影响力的统计、遗传、流行病学和精神病学期刊上发表了290多篇学术论文,其中包括Annals of Statistics, Annals of Applied Statistics, Biometrika, JASA, JRSSB, American Journal of Human Genetics, American Journal of Psychiatry, PNAS, Science, JAMA,以及the New England Journal of Medicine.

具体详情请见其个人主页:https://publichealth.yale.edu/people/heping_zhang-2.profile

主要内容:

An essential feature of longitudinal data is the existence of correlation among the observations from the same unit of observation such as a patient. Two-stage random-effect linear models are commonly used to analyze longitudinal data. These models are, however, not flexible enough for exploring the underlying data structures and, especially, for describing time trends. Various semi-parametric models exist to accommodate general time trends. But, these semi-parametric models do not provide a convenient way to explore interactions among time and other covariates although such interactions exist in many applications. Moreover, semi-parametric models require specifying the design matrix of the covariates (time excluded). Multivariate adaptive splines for analyzing longitudinal data (MASAL) offer a nonparametric method to resolve these issues. To fit nonparametric models, MASAL uses the multivariate adaptive regression splines for the estimation of mean curve and then apply an EM-like iterative procedure for covariance estimation. I will demonstrate the use of MASAL with both simulated and real data.